
T

On the Treatment of Electric and Magnetic Loss in the Linear Bicharacteristic Scheme

for Electromagnetics

by

John H. Beggs, Member, IEEE

NASA/GSFC
Code 567

Greenbelt, MD 20771

March 2000

Abstract

The upwind leapfrog or Linear Bicharacteristic Scheme (LBS) has previously been extended

to treat lossy dielectric and magnetic materials. This paper examines different methodologies for

treatment of the electric loss term in the Linear Bicharacteristic Scheme for computational electro-

magnetics. Several different treatments of the electric loss term using the LBS are explored and

compared on one-dimensional model problems involving reflection from lossy dielectric mate-

rials on both uniform and nonuniform grids. Results using these LBS implementations are also

compared with the FDTD method for convenience.



1 Introduction

Numerical solutions of the Euler equations in Computational Fluid Dynamics (CFD) have il-

lustrated the importance of treating a hyperbolic system of partial differential equations with the

theory of characteristics and in an upwind manner (as opposed to symmetrically in space). These

two features provide the motivation to use the Linear Bicharacteristic Scheme (LBS), or the up-

wind leapfrog method, for the construction of many practical wave propagation algorithms. The

upwind leapfrog method has a more compact stencil compared with a classical leapfrog method.

Clustering the stencil around the characteristic enables high accuracy to be achieved with a low

operation count in a fully discrete way. This leads to a more natural treatment of outer bound-

aries and material boundaries. The LBS treats the outer boundary condition naturally without

nonreflecting approximations or matched layers. The interior point algorithm predicts the out-

going characteristic variables, and the algorithm only requires information about the incoming

characteristic variables at the domain boundaries. Through knowledge of the wave propagation

angle, the local coordinates can be rotated to align with the characteristics, at which the boundary

condition becomes almost exact. Therefore, no extraneous boundary condition or matched layers

are required, which can introduce errors into the solution. The LBS also offers a natural treatment

of dielectric interfaces, without any extrapolation or interpolation of fields or material properties

near material discontinuities.

The LBS was originally developed to improve unsteady solutions in computational acoustics

and aeroacoustics [1]-[7]. It is a classical leapfrog algorithm, but is combined with upwind bias in

the spatial derivatives. This approach preserves the time-reversibility of the leapfrog algorithm,

which results in no dissipation, and it permits more flexibility by the ability to adopt a charac-

teristic based method. The use of characteristic variables allows the LBS to treat the outer com-

putational boundaries naturally using the exact compatibility equations. The LBS offers a central

storage approach with lower dispersion than the Yee algorithm, plus it generalizes much easier to

nonuniform grids. It has previously been applied to two and three-dimensional free-space elec-

tromagnetic propagation and scattering problems [3], [6], [7]. It has also recently been extended

to treat lossy dielectric and magnetic materials [8].

The objective of this paper is to examine different methodologies for treatment of the electric

loss term in an attempt to find an accurate and self-consistent implementation that also works for

perfect conductors in the limit of high conductivity (i.e. rr _ oo). The final goal is to develop

an implementation that will allow for an accurate and efficient extension of this approach to two-
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and three-dimensional problems. This is accomplished by examining several different implemen-

tations of the electric loss term and by testing these implementations on one-dimensional model

problems on both uniform and non-uniform grids. Section 2 of this paper provides a basic intro-

duction to the LBS and it develops the different implementations for the electric loss term using

the LBS. Section 3 presents results for one-dimensional model problems and Section 4 provides

concluding remarks.

2 Theory

Maxwell's equations for linear, homogeneous and lossy media in the one-dimensional TE case

(taking O/cOy = cO/cOz= 0) are

cOEucOt-- el( OHZcOxaEy) (1)

cOHz _ 1 ( cOEy cr*H_) (2)cOt # cOx

where a, a* are electric and magnetic conductivities, respectively. Using the electric displacement

D = ¢E and making the substitution c = 1/v_ gives

cODu OH_ cr
O---t- + _ + -_Du = 0 (3)

1 COHz CODu
c--_ cO----I--+ _ + a*eH_ = 0 (4)

The idea for the LBS is to transform the dependent variables Du and Ha to characteristic variables.

The algorithm presented here is the simplest leapfrog scheme described by Iserles [9] combined

with upwind bias, or simply, the Linear Bicharacteristic Scheme (LBS). To transform (3) and (4)

into characteristic form, we first multiply (4) by c and then add and subtract from (3) to give

1H

cOt cOx + -Dye + a* ecH_ = 0 (5)

1 1H
cO(Du-_H_) _cO(Du-c _) +a-Du-a*ecH z=O (6)

cOt cOx ¢

Now define

P = D_--1H z (7)
C

to represent the left propagating solution and

Q = Dy+I-Hz
c

(8)



to represent the right propagating solution. P and Q are otherwise known as the characteristic

variables. Using these definitions, equations (5) and (6) can be rewritten as

) )O---t+ -_x + 2 - a*ec2 P + g + a*ec2 Q = 0 (9)

Ot C-_x + "2 + 6r* ec2 P + 2 - cr*ec2 Q = 0 (10)

It is convenient to define and store the following coefficients before the time-stepping begins

o"
a = - +a*ec _ (11)

b e- a*ec 2 (12)
c

Equations (9) and (10) can be rewritten more simply as

OQ OQ b a
+ c-_-x + + 0 (13)cgt 2 P 2 Q =

OP OP a b
Ot co-'_'x+ 2P + 5 Q = 0 (14)

To develop the discretized algorithm for a one-dimensional system, the stencils of Figure 1 are

proposed for the LBS. To solve the wave propagation problem without introducing dissipation, it

is necessary that the stencil have central symmetry so that the scheme employed is reversible in

time [2]. The stencil in Figure la is used for a right propagating wave and the stencil in Figure lb

is used for a left propagating wave. The upwind bias nature of the stencils is thus clearly evident.

References [1], [2], [5], [6] and [7] clearly show that the UL method is second-order accurate. Note

that the last two terms in equations (13) and (14) represent the electric and magnetic loss (or source)

terms. The goal of this paper is to determine the most accurate and efficient method of treating

these terms. To that end, several different implementations for these source terms will now be

developed.

2.1 Method A

The first method, denoted by Method A, is to index both loss terms at time level n + 1, for a

semi-implicit formulation. This method was the original method recently proposed in [8]. Using

the stencils shown in Figure 1, the resulting finite difference equations for (13) and (14) are

+ ')
n n--1

-c{ i+1_ i I+ + =0 (16)
2At \ Ax g 2 ' _(4i
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Rearranging(15)and(16)gives

Q_+I_ Qp+ Qn_l_ Qp-11+ 2v (Qn_ Qn_l) + bAtpin+l+ aAtQp+l = 0

5 n+l- Pin -t-Pi21- 5211 - 2/2 (Pi_-I - Pin) -{-aAtP_+1+ bAtQ'_ +1 = 0

(17)

(18)

where v = cAt/Ax is the Courant number. Now, collecting common terms in (17) and putting the

n and n - 1 time indexed terms on the right hand side (with a similar development for (18)) gives

bAt
Qn+l Pin+, = [Q_-) +(I_2v)(Q,__Q,__I)]/(1 +aAt) (19)i + (1 + aat)

bAt
Pin+l It)n+1 _ (1 - 2v) (P_I - Pin)]/(1 + aAt) (20)(1-7-7At) 62/ + ' = Fi+l

The fight side of these equations is the residual and can be rewritten as

R_ = [0F--] +(1-2v)(Qp-Qp_,)]/(l+aAt) (21)

R_ = [p&+l _ (1 - 2v)(P_-I Pin)]/(1 + aAt) (22)

Now, in relation to equations (19) and (20), the following definitions are made

all = 1 (23)

a12 = (bAt)/(1 + aAt) (24)

a21 = (bAt)/(1 + aAt) (25)

a2z = 1 (26)

,_ =[ail a12]a21a22 (27)

/_ = [R_']R_ (28)

2 = p_+l (29)

The update equations (19) and (20) are now rewritten as

AX = (3O)

with a solution given by

X = A-1R (31)

where

_-1 = __1[ a22 -al= ]d -a21 all

d = alla22 -- a12a21

(32)

(33)



Thefinal update equations are then

p_+l

1
-- a n
d (a22R'_ - 12R2)
1

= _ (-a21R_ + allR_)

(34)

(35)

Note that no computational penalty is incurred by this matrix solution, since the a, b and matrix

coefficients can be precomputed and stored before time stepping begins, thus increasing the effi-

_)n+l _--_ pin+lciency of the method. Note that for a PEC as a _ cx_,from (34) and (35), -_i • = 0, as

required. For lossless (a = a* = 0), homogeneous dielectric and magnetic materials, the update

equations are simply

Q_+I = Qn-#+(l_2v)(Q__Qnl) (36)

p_+l- p_l (1 2v)( i+1 P_) (37)

To implement the dielectric material interface boundary condition, consider the one-dimensional

grid shown in Figure 2. The dielectric interface is located at grid point i, and the dielectric mate,-

rials can be lossy. The characteristic variables at grid point i, Pi and Qi, are split into four com-

ponents P1, Q1, P2 and Q2. The terms P1 and Q1 exist just to the left of the material interface as

shown in Figure 2. The remaining terms P2 and Q2 exist just to the right of the material interface.

For material 1, equation (34) is used to predict the value for Q_+I at the boundary and for material

2, equation (35) is used to predict the value for p_+l at the boundary. Then the electromagnetic

boundary conditions are used to solve for p_+l and Q_+I in terms of the "known" characteristic

variables Q_+I and p_+l. To develop this procedure, the electromagnetic boundary conditions on

the tangential field components are given by

Oyl Oy2 (38)Eyl = Ey2:=_---
_.1 _2

H_I = H_2 (39)

For the right-going wave, substituting (38) and (39) into (8) gives

Q_+l
= /-)n+l L 1

_yl + H_ +
¢1

Similarl_ substituting (38) and (39) into (7) yields

(40)

(41)



SinceQ_+I and p_+l are known at the boundary point i, it is necessary to express Q_+I and p_+l

in terms of these variables. Rearranging (40) and (41) gives

r_ Dn+l
Q,_+I = T2Q_+I + _2-'-2 (42)

p_+l _--F,Q?+,+ Tip_+, (43)

where

: (cle,-c2e2_ (44)
F1 \c2e2 -+ cl q /

( 2c2q ) (45)TI = \c2¢2+clel

(c2e2-c,e,) (46)F2 : \ c2e---_7 c1£i

T2 = (47)
c2e2 + clq ]

From (42) it is clear that the right-going wave in material 2 is a sum of a transmitted portion of

the right-going wave in material 1 plus a reflected portion of the left-going wave in material 2. A

similar argument can be made for the left-going wave in region 1. In fact, the coefficients in (42)

and (43) are very similar to the classical Fresnel reflection and transmission coefficients. Because

this is a semi-implicit method, a matrix solution is required to calculate P and Q at each grid point.

Special care needs to be taken when the LBS calculates the solution at grid points i - 1 and i + 1.

At grid point i - 1, the term P_I in (22) becomes P_. At grid point i, the terms Qp and Pin in (21)

and (22) become Q_ and P,_, respectively. At grid point i + 1, the term Q_-I in (21) becomes Q_.

Rearranging equation (17) we have for grid point i,

(1 + alAt) Q_+I = Qp-_ + (1 - 2u) (Q_ - Qp_,) - blAtP_ +1 (48)

Since the term p_+l is unknown, we use the boundary condition (43) to give

blAtrl ] Q_+I blAtT1 Dn+l1 iTal-A-tJ + 1 + a, At _ 2+ R_ (49)

Now we define

R? = [Q_-I 1 + (1 - 2v) (Q_ - QP-1)]/(1 + a,At) (50)

blAtF1
all = 1 + (51)

1 + alAt

bl A t T1
a12 -- (52)

1 + alAt

A similar development using (18) and (42) yields

2b2At T2 Q_+I + [1 b2AtF2]p_+l = n_ (53)



andwedefine

= [Pi_l 1 - (1 - 2v)(Pi_l - P_')]/(1 + a2At) (54)R:'

b2At T2
a21 -- (55)

1 + a2At

b2At F2
a22 = 1 + (56)

1 + a2At

The matrix equation now becomes

[o1o.][o.,]=[.,]a21 a22 p_+l R_

The solution of this matrix equation is

(57)

Q_+I _ 1 a n
-- "_ ( 22R 1 - al2R_) (58)

p_+l 1 a n
= _ (-- 21R 1 q- axlR_ t) (59)

Once Q_t+l and p_+l have been obtained, the boundary conditionswhere d is defined by (33).

in (42) and (43) are applied to update Q_+I and p_+l. For the perfect conductor, the appropriate

boundary conditions are Q_+I = p_+l = 0.0 and p_+l = _Q_+I where Q_+I is predicted from

(48).

2.2 Method B

Method B averages the loss terms at time levels n and n+ 1, which still results in a semi-implicit

formulation. The update equations remain the same as shown in (34) and (35), but the following

definitions are made

R_ =

R_ =

n-I aAt_n _P_]/(19-_)Qi-1 + (1 - 2v) (QP - Q?-I) - --_--(,2i -

._, (1[Pi+l - (1- 2tJ) (Pin+i - Pn) - --_-_i - --_--t"i ]/ q- --

(60)

(61)

all = 1 (62)
bat

a12 -- (63)
(2 + aAt)

bAt
a21 - (64)

(2 + aAt)

a22 = 1 (65)

and the solution proceeds as in Method A. A dielectric surface boundary condition can be devel-

oped for Method B in the same manner as that for Method A, but the details of that analysis are

omitted for the sake of brevity.
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2.3 Method C

Method C indexes the Q loss term at time level n + 1 and the P loss term at time level n in

(13). Similarl)_ in (14), the P loss term is indexed at n + 1 and the Q loss term is indexed at n. This

method is an explicit approach and avoids the matrix solution inherent with the semi-implicit

Methods A and B. To that end, the follwing definitions are made:

R_ = Qp-_ + (1 - 2v) (Q'_ - QP-1) - bAtPi n (66)

P_ = Pi_-l' - (1 - 2v) (Pi_-I - P?) - bitQ? (67)

The update equations are then

Q_+I = R_/ (I + aAt) (68)

p_+l = R_/ (l + aAt) (69)

The dielectric surface boundary condition is obtained by direct application of (42) and (43).

2.4 Method D

Method D indexes both Q and P loss terms in (13) and (14) at time level n, which is also an

explicit approach. The residual terms become

= Qi-1 + (1 - 2u) (Qp - QP-1) - aAtQ'_ - bAP_

R_ = p_l _ (1 - 2u) (P_+I - P_) - aAtP_ - bAtQ'_

and the update equations are

Qn+l = R_i

p +l =

(70)

(71)

(72)

(73)

Unfortunately, this method is unstable for long time integrations and for high conductivity values.

As noted by Thomas [5], this is a straightforward application of the upwind leapfrog method

to the loss (or source) terms in (13) and (14), which he showed to be unstable. He proposed

an alternative method for one source term which stabilizes the algorithm, and these methods

including variations are considered next. Since Method D is unstable, no numerical results will be

presented using this implementation.

2.5 Method E

Method E relies upon the method proposed by Thomas [5] to stabilize the upwind leapfrog

algorithm when source terms are present in the governing equations. The idea is to introduce a
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transformation

Q = e-at/2v (74)

into (13) which gives (after some work)

OV OV0---(+ C--O--xx+ eat/2P

Applying a similar transformation

= 0 (75)

P = e-at/2w (76)

to (14) gives

OW OWO--T+ c--_-x + e_t/2Q = 0 (77)

Method E and the following two methods deal with treatment of the remaining source term in

(75) and (77). For Method E, we index the source terms at time level n + 1. Applying the stencils

of Figure 1 to (75) and (77) and noting that

Vi '_ = eanat/2Qp (78)

W_ = eanat/2P[ _ (79)

gives the following equations

Qp+l + bAtP_+l = R'_ (80)

bAtQ,_+a + p_+l = R'_ (81)

where

np = e-"a'Qp:_ + e-°at/2(1 - 2.) (Q_- QP-1) (82)

n'_ = e-_atP_+] 1 - e-aat/2(1 - 2u) (Pi_-I - Pin) (83)

Thomas [5] used a second order Taylor series expansion of the terms e -aAt and e TM to derive

the final update equations to avoid a costly exponential matrix evaluation and inversion. This is a

concern especially for multidimensional applications and for multiple source terms. However, the

Taylor series expansion is not implemented in the present context, since these exponential updat-

ing coefficients can be precomputed and stored before time stepping begins. No computational

penalty is incurred by using the full exponential terms. The update equations are

Q?+,_ 1-- -- a rt
d(a22R_- 12R2) (84)

p_+, _- 1_ (-amR'_ + allR_) (85)
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with thefollowingdefinitions

all = 1 (86)

a12 = bat (87)

a21 = bat (88)

a22 = 1 (89)

and d is given by (33). The dielectric surface boundary condition is similar to that for Method A.

Unfortunately, this approach exhibits a late-time instability problem for lossy dielectric materials.

A Taylor series expansion of the exponential terms proposed by Thomas [5] results in a slightly

different scheme that also exhibits late time instability.

2.6 Method F

Method F is similar to Method E, but averages the source term in (75) and (77) between time

levels n + i and n. This results in the equations

bat aAt'2 ,_
R? = e-aatQ___-1 + e-aat/2(1 - 2v) (Q? - Q?-I) - --_--e- / P_ (90)

n'_ = e-_AtP_+51 - e-aAt/2(1 - 2v) (pin+l - P?) b_-fe-aat/2Q'_-- (91)

and

all : 1 (92)

a12 = bAt�2 (93)

a21 = bat�2 (94)

a22 = 1 (95)

The final update equations are the same as (84) and (85). Again, the dielectric surface bound-

ary condition is similar to that in Method A. This method also suffers from a late time instability

problem, although the instability growth is not quite as rapid as in Method E. An alternative

scheme based on a Taylor series expansion of the exponential terms also exhibits late-time insta-

bility. Therefore, no results for Methods E and F will be presented.

2.7 Method G

The last method considered indexes the source term in (75) and (77) at time level n. This gives

the final update equations as

Q?+I = e-_atQ__-I + e-aAt/2(1 _ 2v) (Q'_ - Q'_-I) - bAte-aat/2P_ (96)

p_+l _-aAtnn-1 _ e-aAt/2(1 _ 2u)(Pin+, - P?) - bAte-aAt/2Q? (97)= e ri+ 1
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The dielectric surface boundary condition is obtained by a direct application of (42) and (43). This

method is stable and does not exhibit any signs of late-time instability.

3 Results

The numerical results for this paper concentrate on one-dimensional model problems involv-

ing reflection from lossy dielectric materials on both uniform and nonuniform grids. The problem

space size is 1000 cells with nonperiodic boundary conditions. For the uniform grid, a space step

of I cm is used, the time step is 0.33 ps and the Courant number u = 1. For the boundary condi-

tions, a Gaussian point source at i = 0 is used to specify Q(0) and P(1000) = 0. For many complex

geometries, it is often desirable to implement nonuniform grids to reduce the computational effort

and memory resources and to improve modeling accuracy. We define a nonuniform grid by using

a mesh stretch ratio of M = Axmaz/Axmin which is periodic every 10 cells. Figure 3 shows an

expanded view of a typical one-dimensional nonuniform grid with a mesh stretch ratio of 2 and

a periodicity of 10 cells. The Courant number for a nonuniform grid is defined by cAt/Axmi_,

where Axrain is the smallest cell size in the nonuniform grid.

The first problem is a reflection and transmission problem for a lossy dielectric half space on

a nonuniform grid. The dielectric half space extends from 5 _< x G 10 with material parameters

er2 = 10, a2 --=0.2, a* = 0 and #r2 = 1. Figure 4 shows the reflection coefficient magnitude re-

sults for the exact solution, the FDTD method and the various LBS implementations calculated at

x = 4.0 m (cell i = 276). Note that the FDTD results vary widely over the entire frequency band

due to the nonuniform grid structure. However, most of the LBS implementations have compa-

rable accuracy to the FDTD method, and these results are quite smooth, even for the nonuniform

grid. Figure 5 shows the percent error in reflection coefficient magnitude for the LBS implemen-

tations. The FDTD method was not shown due to the wide variation in error. Note that Method

C for the LBS implementations has the overall lowest error over the entire frequency range, and is

therefore the method of choice for modeling lossy media with the LBS.

The second problem was the same as the previous case, but with a uniform grid of I cm spac-

ing and material parameters ¢r2 = 50, a2 = 0.2, a* = 0 and #r2 = 1. Figure 6 shows the reflection

coefficient magnitude results for the exact solution, the FDTD method and the various LBS imple-

mentations calculated at x = 4.0 m (cell i = 401). Note that the FDTD method exhibits slightly

better agreement for lower frequencies, but then diverges sharply at higher frequencies. Figure

7 shows the percent error in reflection coefficient magnitude for the LBS implementations, which
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maintain a rather flat frequency dependence at higher frequencies. This provides increased accu-

racy and fidelity for the higher frequency components in a given simulation. Although Method

B exhibits slightly lower error at very low frequencies for this particular problem, the differences

between methods is not significant enough to prefer Method B over any other method. Method C

is the most suitable alternative for multidimensional applications.

The third problem was the same as the previous case, but with material parameters ¢r2 = 80,

_r2 = 0.0, or* = 0 and #r2 = 1. Figure 8 shows the reflection coefficient magnitude results for the

exact solution, the FDTD method and the various LBS implementations calculated at a: = 5.0 m

(cell i = 500). Note that the FDTD method diverges sharply at higher frequencies, but the LBS

methods are exact, and each LBS method reduces to the standard implementation for lossless di-

electric media.

The final problem was also the same, but with a lossless magnetic media with material param-

eters ¢r2 = 1, _r2= 0.0, or*= 0 and #_2 = 5000. Figure 9 shows the reflection coefficient magnitude

results for the exact solution, the FDTD method and the various LBS implementations calculated

at x = 5.0 m (cell i = 500). Note how the FDTD method diverges from the exact solution, but

the LBS methods are again exact for lossless magnetic media. Both the FDTD method and LBS

methods had difficulty in predicting correct reflection coefficient results for lossy magnetic me-

dia, which could be the result of not updating the electric and magnetic conduction currents as

separate solution variables. This alternative will be explored for further research.

4 Conclusions

This paper has examined seven implementations of the Linear Bicharacteristic scheme for com-

putational electromagnetics to treat heterogeneous lossy dielectric and magnetic materials. Two of

the six implementations exhibited late-time instabilities and were therefore eliminated from fur-

ther consideration. The remaining four implementations were tested on simple one-dimensional

model problems involving reflection from lossless and lossy dielectric and/or magnetic half-

spaces. It was found that the method of choice involved indexing one source term at the present

time level, and the coupled source term at the previous time level. This implementation provided

two benefits. First, it provided similar or better accuracy than the other implementations. Second,

it is the most suitable implementation for multi-dimensional problems to avoid a matrix solu-

tion at each time step. Overall, the LBS has several distinct advantages over conventional FDTD

algorithms. First, the LBS is a second-order accurate algorithm which is about 2-3 times as eco-
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nomical. The LBS can also be made to have zero dispersion error in certain instances. Second,

the LBS provides a more natural and flexible way to implement surface boundary conditions and

outer boundary conditions by using characteristics and an upwind bias technique popular in fluid

dynamics. Third, the LBS provides more accurate results on nonuniform grids. The upwind bi-

asing provides a more flexible generalization to unstructured grids. The results of this particular

study and a previous study [8] indicate that the LBS is a superior algorithm for treatment of di-

electric materials, especially its performance on nonuniform grids. Based on these results, the LBS

is a very promising alternative to a conventional FDTD algorithm for many applications.
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5 Figure Captions

Figure 1. One-dimensional upwind leapfrog computational stencils for right-going (a) and left-

going (b) characteristics.

Figure 2. One-dimensional computational grid for the LBS showing characteristic variables, a di-

electric interface located at cell i, and corresponding field components and characteristic variables

used for the surface boundary condition.

Figure 3. Section of a one-dimensional non-uniform grid with a mesh stretch ratio of 2 and a base

cell size of 1 cm. The grid variation is periodic every 10 cells. •

Figure 5. Reflection coefficient magnitude versus frequency for reflection from a lossy dielectric

half-space using the FDTD method and the LBS implementations on a non-uniform grid.

Figure 6. Percentage error in reflection coefficient magnitude versus frequency for reflection from

a lossy dielectric half-space using the LBS implementations on a non-uniform grid.

Figure 7. Reflection coefficient magnitude versus frequency for reflection from a lossy dielectric

half-space using FDTD and the LBS on a uniform grid.

Figure 8. Percentage error in reflection coefficient magnitude versus frequency for reflection from

a lossy dielectric half-space using the LBS implementations on a uniform grid.

Figure 9. Reflection coefficient magnitude versus frequency for reflection from a lossless magnetic

half-space using FDTD and the LBS on a uniform grid.
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